If it's not what You are looking for type in the equation solver your own equation and let us solve it.
160+10x=10x^2
We move all terms to the left:
160+10x-(10x^2)=0
determiningTheFunctionDomain -10x^2+10x+160=0
a = -10; b = 10; c = +160;
Δ = b2-4ac
Δ = 102-4·(-10)·160
Δ = 6500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6500}=\sqrt{100*65}=\sqrt{100}*\sqrt{65}=10\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{65}}{2*-10}=\frac{-10-10\sqrt{65}}{-20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{65}}{2*-10}=\frac{-10+10\sqrt{65}}{-20} $
| -8y=1.44 | | 4x+6=18+7x-9 | | 17*x=289 | | 3x+89=8x+58+90 | | 3x+89=8x+58=90 | | 289/x=x | | 13x-32+7x-8=180 | | 3x+89=8x+58+180 | | 2-5a=-12.5 | | 0.12x=0.03(5-x) | | 2/3(x+5)=24 | | 15x=30(x+300) | | 5-3n=2(7n-6) | | .99n+19.99=118 | | 142x+1+40x-3=180 | | 36-w=12 | | 36000+7x=31000+11x | | k+7=70 | | z=144 | | 4x-13x=99 | | 30=25+y | | 95000/x=0 | | y-9.3=10 | | x^-0,25=0,239 | | -10x-4=24 | | p+263=186 | | p-263=77 | | 13x-17+9x-1=180 | | 6(y-1)-5(y+2)=-14 | | 25^2x-1=125^4x+4 | | 7(n-1)=8n-14 | | 24+w=4w |